The Soil Vapor Intrusion Pathway: A Developing Landscape

Background Indoor Air Levels of Volatile Organic Compounds (VOCs) and Air-Phase Petroleum Hydrocarbons (APH) in Massachusetts Residences

HALEY&

NEWMOA 12 April 2006

Richard J. Rago Senior Scientist Haley & Aldrich, Inc. 800 Connecticut Boulevard East Hartford, Connecticut 06108 Tel: (860)-290-3115 Fax: (860)-282-9500 rrago@haleyaldrich.com

Outline

- Vapor Intrusion Overview
- History of Vapor Intrusion Pathway Evaluation by Various State and Federal Programs
- Indoor Air Sampling Considerations
- Background

Vapor Intrusion to Indoor Air

Vapor intrusion is the migration of volatile chemicals from the subsurface into overlying buildings.

Definitions Of Soil Gas

- Gaseous compounds/elements in the spaces between soil particles.
- Vapor that can be extracted from the subsurface, above the water table.
- In uncontaminated areas, a mix of atmospheric gasses (O₂, N₂) and other gasses, such as CO₂ and CH₄.
- In contaminated areas, a combination of naturally occurring and other gasses.

History of VI Guidance Development

State Vapor Intrusion Guidance

Not evaluated

Defers to federal program

.

Developed/developing program with varied flexibility

Developed program with varied flexibility, including numerical standards/screening criteria

Conservative program with substantial regulatory oversight

Currently developing guidance

No guidance; pathway not evaluated currently

State Vapor Intrusion Guidance

- Conservative state program with substantial regulatory oversight
 - Colorado (review)
 - Kansas (developing)
 - New Jersey (review)
 - New York (review)
 - Texas (developing)
- Defers to federal program
 - Alaska (developing)
 - Georgia
 - Illinois
 - Indiana (developing)
 - Minnesota (non-LUST)
 - Mississippi
 - North Carolina
 - Ohio

- State program with varied flexibility
 - Arizona (developing)
 - California (review)
 - Connecticut (revision)
 - Massachusetts (revision)
 - Michigan (revision)
 - New Hampshire
 - Oregon
 - Pennsylvania
 - Rhode Island
 - South Carolina
 - Virginia
 - Washington
 - Wisconsin
- States in italics have developed volatilization standards or screening criteria for groundwater, soil and/or soil vapor.

Preference for Measurement vs. Modeling

Not evaluated

Modeling recommended prior to indoor measurements (federal approach)

Indoor air or sub-slab measurements desired

Future Use Considered

Current site use or known future use only

Hypothetical future use considered

Not applicable; pathway not evaluated currently

OSHA Applicability

OSHA regulates workplace (current federal position)

Hazardous waste program regulates workplace

Hazardous waste program regulates if subsurface VOCs differ from workplace; OSHA regulates if subsurface VOCs are same as workplace

Attributes of MA, NY, and NJ Guidance

	MA	NY	NJ
Trigger distance (feet)	GW: 30H; 15V Soil: 6H; 10V	100	100H; 30V
Modeling vs. Measurement	Measurement	Measurement	Measurement
Numerical criteria	GW	IA (5 compounds)	IA, possibly SV and GW
Background #s incorporated?	Yes	Yes	No
Analyte list	Site-related	SV: "wide range" IA: site-related	Full suite TO-15
Outdoor air sampling?	Yes	Yes	Yes
Hypothetical future use?	No	Yes	Yes

When to Collect the Sample?

Parameter	Most Conservative	Least Conservative
Season	Late winter/early spring	Summer
Temperature	Indoor 10°F > Outdoor	Indoor < Outdoor
Wind	Steady > 5 mph	Calm
Soil	Saturated with rain	Dry
Doors/Windows	Closed	Open
Mechanical Heating System	Operating	Off
Mechanical Fans	Off	On

(Indoor Air Sampling and Evaluation Guide, MADEP, April 2002)

What is Indoor Air Background?

- Things that are present at a site in the absence of a release
- Can differ from residence to residence
- May be naturally occurring or anthropogenic
 - Mold, Moisture, Radon
 - Pet allergens
 - Carbon dioxide and Carbon monoxide
 - VOCs/SVOCs
 - Asbestos and Particulates
 - More

States Utilizing Indoor Air Background

Not reviewed, VI guidance does not currently exist, or background not considered Indoor air background considered <u>quantitatively</u> (in standards or evaluation) Indoor air background considered qualitatively (Weight of Evidence approach) Defers to federal program (background considered but included in Risk Assessment)

Target Residential Indoor Air Concentrations

Why is there Variability in Regulatory Indoor Air Target Concentrations?

Based on background values

- Background values
- Background references
- Target risk levels
- Toxicity factors
- Odor thresholds
- Analytical quantitation limits
- Exposure factors (i.e., exposure duration, inhalation rate, body weight)

Indoor Air Background – Existing Literature Data

- Shah & Sing/EPA National Ambient VOC Database (1988)
- **Stolwijk** (1990)
- Vermont (1992)
- MADEP (2002)
- Kurtz & Folkes (2002)
- NYSDOH (2003)
- Ohura et al (2004)
- Adgate et al (2004)

Massachusetts Indoor Air Background Study

- Objective: To obtain background concentrations of Air-Phase Petroleum Hydrocarbons (APH) and Volatile Organic Compounds (VOCs) in the living space of Massachusetts residences
- Funded by Haley & Aldrich, Inc. and Alpha Analytical Labs, Inc.
- Sought and obtained EPA Region I and MA DEP study design review, input, and acceptance
- Implemented with support of LSPA Technical Practices Committee, a Massachusetts-based group of environmental professionals

Indoor Air Sample Locations 2004-2005

Top 11 Compounds Detected

	2004 - 2005 MA RESIDENTIAL IAQ STUDY PRELIMINARY RESULTS						
COMPOUND	FREQUENCY OF DETECTION	MNMUM DETECTED CONCENTRATION	MAXIMUM DETECTED CONCENTRATION	MEDIAN CONCENTRATIONS (ug/m3)	UPPER QUARTILE (75TH PERCENT)	UPPER QUARTILE (90TH PERCENT)	
		(ug/m3)	(ug/m3)		(ug/m3)	(ug/m3)	
	100/100	16.8	7290	286	676	1673	
ACETONE	97/100	4.89	257	26.5	41.4	61.6	
ISOPROPYL ALCOHOL	92/100	1.26	443	10.1	29.5	89.7	
TOLUENE	90/100	1.99	944	7.6	17.9	42.5	
C5-C8 ALIPHATICS	83/100	24.9	1240	58	125	329	
C9-C12 ALIPHATICS	80/100	28.4	3480	68	110	222	
2-BUTANONE	79/100	30	3270	27	4.0	9.6	
CHLOROMETHANE	79/100	1.04	4.21	1.2	1.4	1.8	
ETHYL ACETATE	52/100	1.96	32	2.3	5.9	9.8	
M/P-XYLENE	52/100	2.54	81.9	3.0	7.4	21	
MTBE	46/100	2.54	155	1.8	6.9	38	

NOTE: MA DEP RECOMMENDED BACKGROUND VALUES ARE AVAILABLE FOR 7 OF THESE 10 COMPOUNDS.

11 Interesting Compounds

	2004-2005 MARESIDENTIAL						
COMPOUND	FREQ OF DETECTION	MNMLM DETECTED CONC (ug/m3)	MAXIMUM DETECTED CONC. (ug/m3)	MEDIAN (50THPERCENT) (ug/m8)	UPPER QUARTILE (75TH PERCENT) (ug/m3)	UPPER QUARTILE (90TH PERCENT) (ug/m3)	RECOMMENDED BACKGROUND VALLES (ug/m3)
C5-C8 ALIPHATICS	83 / 100	24.9	1240	58	125	329	85
C9-C12 ALIPHATICS	80 / 100	28.4	3480	68	110	222	90
ACETONE	97 / 100	4.89	257	26.5	41.4	61.6	27.04
BENZENE	31 / 100	1.6	28.1	20	1.9	68	21
TOLUENE	90 / 100	1.99	944	7.6	17.9	425	28.65
ETHMLBENZENE	19 / 100	201	30	22	21	4.60	9.62
MP-XYLENE	52 / 100	254	81.9	30	7.4	21	40**
OXYLENE	29 / 100	22	23	22	24	68	10**
METHALTERT-BUTYLETHER	46 / 100	254	155	1.8	6.9	38	3-18*
TETRACHLOROETHMLENE	5 / 100	6.20	27.6	34	34	34	11.01
TRICHLOROETHMLENE	2 / 100	3.84	110	27	27	27	4.49

* the MADEP provides a range for the methyl tert-butyl ether background value

**: these background values are from the Stdwijk paper. MADEP using a xylenes, mixture background value of 72.4 ug/n8

Naphthalene

- Naphthalene is listed as target compound in the MA "APH" method, also tested by Haley & Aldrich in 100 samples.
 Naphthalene is not listed in the TO-15 method (perception of poor method recoveries).
- Naphthalene detected in 16 of 100 APH samples, ranging from 2.12 ug/m3 to 41.5 ug/m3.
- Of 16 samples:
 - six were homes with natural gas heat
 - nine were in homes with oil heat
 - one was a home heated by propane
- The three highest naphthalene concentrations were detected in samples collected in homes heated with oil.

Benzene Background Comparison

BENZENE

Toluene Background Comparison

TOLUENE

Ethylbenzene Background Comparison

ETHYLBENZENE

m/p-Xylene and o-Xylene Background Comparison

Tetrachloroethylene Background Comparison (2004-2005)

6.00 5.00 4.00 **6 m** 3.00 ■ TETRACHLOROETHYLENE 2.00 1.00 0.00 Stol. 1990 S&S 1988 MA 2005 50%ile NY 2003 50%ile MN 2000 50%ile VT 91-92 50%ile 50%ile 50%ile

TETRACHLOROETHYLENE

Trichloroethylene Background Comparison (2004-2005)

APH Background Comparison (2004)

Handling of non-positive results (nondetected values)

- Use of whole reporting limits for "normal" low level TO-15 (RL ~ 0.5 ppbV)
- Use of one half the reporting limits for "normal" low level TO-15 (RL ~ 0.5 ppbV)
- Use of whole or one half the reporting limits for "SIM" TO-15
- (NYDOH) substitution of randomly generated values for non-detect values less that 0.25 micrograms per cubic meter (0.43 micrograms per cubic meter for hexachlorobutadiene)
- Helsel approach

What's Next?

- Data submitted to EPA and MA DEP
 - Publication of study
 - Statistically evaluate distribution of data
 - Determine relationships between concentrations and possible indoor sources
 - Fuel source
 - Attached Garages
 - Smoking
 - Home construction
 - Population

Summary/Potential Data Application

- Indoor air background is very personal
- Indoor air background can and does change
- Use this preliminary data with caution
 - should not be applied blindly
 - these are residential values
 - snapshot data
- Carefully review background studies for focus
- Background data may be useful in evaluating extent of subsurface contamination
- Background data may be considered in calculating clean up criteria

Summary

- Management of VI sites may be challenging and sometimes inconsistent, unpredictable, and resource-intensive
- Focus in United States tends to be on chlorinated VOCs
- Regulators and consultants are still grappling with petroleum hydrocarbons due to biodegradation and background
- Future trends include more soil gas sampling, proactive installation of vapor mitigation systems in lieu of sampling, collection of biodegradation parameters (O₂, CO₂, vertical profiles)
- Mitigation is often a cost-effective solution, especially when implemented during construction or redevelopment

Thank You

 State and federal vapor intrusion guidance and references can be found at: http://www.haleyaldrich.com/vi%20services.html

Searchable, indexed database for household products: <u>http://householdproducts.nlm.nih.gov/</u>